DEFORMATION OF 2-STEP NILMANIFOLDS WITH ABELIAN COMPLEX STRUCTURES
نویسندگان
چکیده
منابع مشابه
Deformation of 2-Step Nilmanifolds with Abelian Complex Structures
We develop deformation theory for abelian invariant complex structures on a nilmanifold, and prove that in this case the invariance property is preserved by the Kuranishi process. A purely algebraic condition characterizes the deformations leading again to abelian structures, and we prove that such deformations are unobstructed. Various examples illustrate the resulting theory, and the behavior...
متن کاملInvariants of Complex Structures on Nilmanifolds
Let (N, J) be a simply connected 2n-dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on N compatible with J to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. In [7], J. Lauret proved that minimal metrics (if any) are unique up to i...
متن کاملStability of Abelian Complex Structures
Let M = Γ\G be a nilmanifold endowed with an invariant complex structure. We prove that Kuranishi deformations of abelian complex structures are all invariant complex structures, generalizing a result in [5] for 2-step nilmanifolds. We characterize small deformations that remain abelian. As an application, we observe that at real dimension six, the deformation process of abelian complex structu...
متن کاملOn 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type
In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five. Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces. Moreover, we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...
متن کاملGeodesic Conjugacy in Two - Step Nilmanifolds
Two Riemannian manifolds are said to have C-conjugate geodesic flows if there exist an C diffeomorphism between their unit tangent bundles which intertwines the geodesic flows. We obtain a number of rigidity results for the geodesic flows on compact 2-step Riemannian nilmanifolds: For generic 2-step nilmanifolds the geodesic flow is C rigid. For special classes of 2-step nilmanifolds, we show t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2006
ISSN: 0024-6107,1469-7750
DOI: 10.1112/s0024610705022519